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Abstract

The diversity of applications and typically scarce node resources set very tight constraints to Wireless Sensor Networks
(WSN). It is not possible to fulfill all requirements with a general purpose WSN, for which reason the rapid development of
application specific WSNs is preferred. We present a new framework called Wlreless SEnsor NEtwork Simulator (WISE-
NES) for the design, simulation, and evaluation of WSNs. The target WSN is designed in Specification and Description
Language (SDL), simulated in WISENES, and implemented on target platform either through automatic code generation
or manually. The high-level WSN model is back-annotated with the measured values from a real platform. In this way,
very accurate WSN simulations can be performed with a rapid design cycle. WISENES itself has been verified with TUT-
WSN (Tampere University of Technology Wireless Sensor Network) and ZigBee protocols. The MAC protocol of ZigBee
was designed in two weeks from scratch by one designer, which shows the effectiveness of WISENES. For accuracy com-
parison, the results show 6.7% difference between the modeled and measured TUTWSN prototype power consumption.
WISENES hastens the evaluation of new protocol and application configurations, especially for the large scale and
long-term WSN deployments.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Wireless Sensor Network (WSN) applications are
diverse ranging from toys to military systems. Typ-
ical challenges for WSN are large scale, constantly
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hamalainen@tut.fi (T.D. Hamaél4inen).

changing network topology, and error prone com-
munications, while in WSN nodes processing and
storage capacities, as well as energy resources are
limited. Most often WSNs are demanded to be
robust against environmental strains, and able to
autonomously recover from error situations. Fur-
ther, depending on the applications and the interac-
tion with environment, time synchronization and
security requirements can be strict [1,2].

Opposite to general expectations, an all-purpose
WSN is not a reasonable goal, since it is impossible
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to meet all the real life constraints simultaneously.
Instead, WSN protocol layers and their configura-
tion parameters must be tailored to meet the specific
application requirements. However, the design
space is very large and makes the design automation
the most important challenge for real working
WSNs. A designer simply cannot handle all the
parameters, functions, and their complicated depen-
dencies without a tool support.

Prototyping can be applied to a single node func-
tionality and small scale WSN testing. However, pro-
totypes are not applicable for verifying the operation
of e.g. a thousand-node network during a five year
deployment. Even moderate sized networks benefit
from extensive simulations, but the accuracy of
simulation is very important. According to our expe-
riences on real WSNs, the smallest and a minor-look-
ing issue might cause severe changes for example in
the network power consumption. Therefore, the
accuracy of the design and performance estimations
is not an option but essential for any real WSN.

Several legacy computer network simulators exist
for the testing and modeling of communication
protocols, but they omit WSN specific aspects. Pro-
posed WSN simulators vary in their implementa-
tion, scale, and in the accuracy and coverage of
the modeling of node platforms, protocols, and real
world phenomena. Common features are the
models for dedicated platforms, sensing, and wire-
less networking. However, none of the previous
WSN simulators offers a complete and seamless
design flow from abstract sketching to the real
implementation.

Our Wlreless SEnsor NEtwork Simulator
(WISENES) framework is the first tool that enables
the design, simulation, implementation and evalua-
tion of WSNs with measured back-annotated infor-
mation. WISENES is targeted to the design of
deployable, real WSN networks. The main difference
to the other proposed frameworks is that there is no
need to carry out a separate high abstraction WSN
modeling project and another development project
for the actual implementation. Instead, WISENES
supports all phases in the design flow. However, if
preferred, WISENES can also be used for the plain
simulations like other WSN simulators. In all cases,
WISENES eases the assessment of the protocol and
application interoperability, and the evaluation their
applicability for different sensor node platforms.

The key benefit of WISENES is that the evalua-
tion of protocols, applications, and their different
configurations is carried out starting from the

design phase. The framework defines rules and
interfaces for a designer to the protocol stack and
application implementation. The functionality,
type, or composition of the protocols is not limited
by the framework. Sensor nodes, transmission med-
ium, and inspected phenomena are modeled sepa-
rately in the WISENES framework. The WSN
protocols and applications are implemented in Spec-
ification and Description Language (SDL) [3]. The
models of high abstraction level SDL are compiled
to executables used for both simulation and final
implementation. Unlike in the other WSN simula-
tors, target node platforms are not restricted to a
specific pre-defined platform.

WISENES has been tested and its own perfor-
mance evaluated with large TUTWSN (Tampere
University of Technology Wireless Sensor Network)
[4] and ZigBee networks [5]. For the evaluation of
WISENES accuracy, real and simulated TUTWSNs
are compared. However, the comparison of different
WSNs themselves is not the primary scope of this
paper.

This paper is organized as follows. Section 2 dis-
cusses the related work in the area of WSN simula-
tion and presents the comparison of WISENES with
the other WSN simulators. WISENES design is pre-
sented in Section 3 and Section 4 introduces the
WISENES framework. The use of WISENES for
TUTWSN and ZigBee protocol implementation is
presented in Section 5. Section 6 gives the evalua-
tion of WISENES, and the TUTWSN and ZigBee
simulation results. Finally, conclusions are given
and future work projected.

2. Related work

Legacy computer network simulators, such as ns-
2 [6], GloMoSim [7], Qualnet [8], OPNET [9],
OMNeT++ [10], Scalable Simulation Framework
(SSF) [11], and J-Sim [12] enable the simulation of
wireless network behavior and protocol stack oper-
ation but lack accounting for WSN characteristics.
This is overcome in the simulators proposed specif-
ically for WSNs, which we have categorized to
networking oriented and sensor node simulators.
The networking oriented simulators model the
transmission medium in detail and are more suitable
for the large scale WSN simulations. The sensor
node simulators mainly simulate the operation of
a single node but implement a lightweight commu-
nication model. Currently, there exist eleven rele-
vant proposals for the networking oriented WSN
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simulators and six proposals targeting to the sensor
node modeling. These are compared with WISENES
in Section 2.3.

2.1. Networking oriented simulators for WSN

Most of the proposed networking oriented simu-
lators are based on the legacy computer network
simulators. SensorSim [13] and Naval Research
Laboratory’s (NRL) sensor network simulator [14]
extend ns-2 with general WSN features. sQualnet
[15] is built on top of Qualnet and Simulator for
Wireless Ad-hoc Networks (SWAN) [16] is based
on SSF. SENSIM [17] and simulation template for
EYES [18] utilize OmNet++ environment, while
J-Sim sensor simulator [19] adds WSN features to
its parent simulator. VisualSense [20] is an extension
to Ptolemy II [21], Prowler [22] utilizes MATLAB,
and H-MAS [23] and SENSE [24] implement cus-
tom simulation environments.

The most realistic transmission media and proto-
col stacks are available in SensorSim, NRL simula-
tor, sQualnet, and J-Sim sensor simulator. While the
first two rely on the models available in parent
simulators, the last two include also a set of WSN
protocols. VisualSense has several models for trans-
mission medium, which vary in their accuracy.
SWAN and Prowler include abstracted transmission
media and lowest layer protocol models that esti-
mate the network operation. SENSIM, EYES simu-
lator, H-MAS, and SENSE have error free
transmission medium models, in which the signal
propagation is dependent only on the transmission
range. Simple protocol stacks are available for
SENSIM, H-MAS, and SENSE. In VisualSense
and EYES simulator, the protocol stack is imple-
mented by the designer.

A separate sensing channel containing also the
sensed targets is used for phenomena modeling in
SensorSim, NRL simulator, sQualnet, and J-Sim
sensor simulator. VisualSense has also a dedicated
channel for modeling the propagation of different
phenomena. Of the other related simulators, SWAN
models catastrophic plume dispersion, and H-MAS
generates random sensor readings. Prowler, SEN-
SIM, EYES simulator, and SENSE do not support
phenomena sensing.

Concerning the node platform capabilities, only
the power consumption is accounted in the related
simulators. SensorSim, sQualnet, SENSE, SEN-
SIM, and J-Sim sensor simulator have detailed
power models, which consider battery discharge

rate and relaxation. NRL simulator and EYES sim-
ulator use linear battery models, in which the max-
imum energy capacity is available independent on
the discharge rate. Prowler and VisualSense esti-
mate the power consumption based on activity,
whereas in SWAN and H-MAS power consumption
is not taken into account.

The simulated code is applicable directly for
hardware platforms in SensorSim, sQualnet, J-sim
sensor simulator, and partly in VisualSense. In Sen-
sorSim, simulated SensorWare applications are
compatible with custom hardware platforms [25].
The other three simulators enable the execution of
applications, and sQualnet also higher layer proto-
cols, on Berkeley motes [26] on top of well-known
WSN Operating System (OS) TinyOS [27].

VisualSense uses a graphical notation for the
design and supports a combination of different
Models of Computation (MoC) of Ptolemy II.
Abstracted application scripts can be simulated also
in Prowler.

2.2. Sensor node simulators

Most of the proposed sensor node simulators are
targeted to TinyOS motes. Complete TinyOS sys-
tem can be simulated with TinyOS SIMulator
(TOSSIM) [28], ATmel EMUlator (ATEMU) [29],
and TinyOS Scalable Simulation Framework
(TOSSF). TOSSF itself is an extension to SWAN
[30]. SENS [31] supports only TinyOS application
simulation. EmSim implements a simulation envi-
ronment for custom Em™ Linux applications and
protocols [32]. Sensor Network Asynchronous Pro-
cessor (SNAP) [33] is a hardware emulator, which
connects several processors on a Network-on-Chip
(NoC).

The TOSSIM transmission medium model is
directed graphs with individual bit error rates,
whereas in ATEMU and EmSim the transmission
medium is error free accounting only the transmis-
sion range. TOSSF utilizes a transmission medium
model from SWAN and in SENS transmission med-
ium and networking protocols are combined into a
simple model. In SNAP, NoC models the trans-
mission medium. Protocol stacks in TOSSIM,
ATEMU, and TOSSF are dependent on TinyOS
configuration. EmSim and SNAP implement simple
protocols for the system testing.

Phenomena sensing is modeled in TOSSF by the
plume dispersion model of SWAN. TOSSIM and
EmSim retrieve a sensor reading from an external
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source. SENS incorporates a separate environment
model that supports sensing and actuating. In
SNAP and ATEMU phenomena are not modeled.
None of the simulators models power consumption.
The applications from all sensor node simulators,
and protocols from other than SENS, can be
directly mapped to the hardware platforms. How-
ever, the platform is restricted to a specific one.

2.3. Comparison of WISENES with related
simulators

The comparison of WISENES and the other
WSN simulators is summarized in Table 1. The
comparison is based on the public information
available about each simulator and the possible par-
ent simulator engine. If exact scalability informa-
tion is not available, the simulator is assessed
according to the largest reported simulations.

The scope of input parameterization is vital when
comparing the configurability of simulators to dif-
ferent kinds of platforms, protocols, and applica-
tions. Also, the availability of Graphical User
Interfaces (GUI) and the type of information output
by the simulator are accounted in the comparison.
The possibility to use simulated protocols and appli-
cations for the final implementations on physical
platforms defines the applicability of a simulator
as a complete design and development environment.

The term accurate results denotes a very close cor-
respondence of the simulation results to the real
world measurements with physical WSN prototypes.
Accurate results in full-scale simulations need to
combine at least realistic models for communica-
tions (application, transmission medium, transceiver
unit, and low-level communication protocols) and
node platform (energy, memory, peripheral 1/0,
and computation). The node state changes, periphe-
ral activation, and leakage currents contribute to the
accuracy of energy consumption. The memory allo-
cation and thread scheduling in simulator depend on
the accuracy of the OS model of the simulator.

As shown in the table, most of the simulators are
capable of simulating WSN scenarios consisting of
thousands of nodes. This is an acceptable limit for
the current WSNs, but in future the capability to
simulate networks with in order of magnitude larger
scale is required.

Major differences between the simulators are in
input and output parameterization. Although sen-
sor node simulators emulate a single node platform
in detail, they do not allow the testing and evalua-

tion of applications and protocols on other types
of sensor nodes. Further, they omit the modeling
of node power consumption. From the simulators,
WISENES incorporates the most comprehensive
modeling of node platforms, which allows a detailed
description for virtually any real node platform. In
addition to power consumption, which is consi-
dered also in several other simulators, WISENES
accounts memory and computation capacities.
From the related simulators, the possibility to define
different platforms is available only in sQualnet,
but its modeling is not as detailed as that of
WISENES.

Most of the simulators visualize network topol-
ogy and key parameters through GUI. The event
information is gathered to trace or log files with
varying level of detail. From the related simulators,
ns-2 based simulators output extensive trace files.
Compared to the other simulators, WISENES out-
puts extensive event and data statistics but in addi-
tion also detailed information about the node
resource usage. Further, in WISENES a designer
can add own log items e.g. to obtain the values of
a desired parameters during the simulated period.

The simulated code is directly applicable for node
platforms in sensor node simulators. In networking
oriented simulators, two approaches are taken for
the final implementation. Either the simulated pro-
tocols and applications are converted to executables
for node platforms, or an existing code library is
used for emulating a node in a large scale simula-
tion. In the latter, the node implementation already
exists, and only the configuration parameters for the
final implementation are acquired by the simula-
tions. WISENES is the only simulator that supports
both of these. The SDL generated C from WISE-
NES with a custom lightweight kernel is also appli-
cable for the resource constrained sensor nodes [34].

A rapid protocol evaluation for a specific appli-
cation is possible only if the simulator protocol
stack is modular and its layers interchangeable.
Most of the simulators that descend from a legacy
computer network simulator incorporate a modular
protocol stack. In WISENES, the protocol layers
communicate through pre-defined interfaces, which
allow the replacement of simulated protocols at
the different layers. Graphical design of protocols
and applications is possible only in WISENES and
VisualSense. In both simulators the high abstraction
level designs can also be embedded to node plat-
forms. However, WISENES provides significantly
more accurate results compared to VisualSense.



Table 1

Comparison of WISENES and existing WSN simulators

Simulator Simulator Scalability Simulator input Simulator output Final Benefits Deficiencies
engine implementation
WISENES Extended ~10,000 [34]  Nodes, protocols, GUI, log files, (data, SDL code Graphical design, accurate Sensing channel
telelogic applications, energy, memory, generation/C results, modular,
TAU SDL mediums (XML) CPU, errors) modules directly scalability, back-annotation
Networking oriented simulators
SensorSim ns-2 ~2000 [17] Power model, ns-2 nam UI, trace Applications for Accurate results, variety of  No memory and CPU
protocols (TCL) files (data, energy, SensorWare, ns-2 protocols (ns-2), modular modeling
errors) protocols
sQualnet Qualnet ~10,000 Nodes, traffic, Qualnet Visualizer, nesC applications Accurate results, No memory and CPU
protocols (scripts) statistics files (data, directly integration to HW, modeling in simulator
energy) modular, scalability
NRL ns-2 ~2000 [17] Nodes, protocols, ns-2 nam UI, trace ns-2 protocols Variety of protocols (ns-2), No memory and CPU
simulator sensing (TCL) files (data, energy, modular modeling
errors)
SWAN DaSSF ~10,000 Nodes, plume GUI, system WiroKit routing Scalability Inaccurate medium model,
dispersion (DML) printouts (data protocol directly no node and sensing
counters, delay) modeling, no modularity
SENSIM OmNet++ ~5000 Protocols (ini-file OmNet++ GUI None Modular No sensing, memory, and
(for OmNet++)) (data) CPU modeling
EYES OmNet++ <1000 Protocols (ini-file OmNet++ GUI None Modular Inaccurate energy and
simulator (for OmNet++)) (data,errors) medium modeling, no
memory and CPU models
J-Sim sensor J-Sim >1000 [35] Protocols (script) Text output, GUI Applications Modular No GUI, no memory and
simulator possible, (data)” directly CPU modeling
VisualSense Ptolemy 11 ~100 MoC Ptolemy 11 GUI Algorithms Graphical design, algorithm ~ No protocol stack, nodes
configurations (topology, node integrated to integration modeled by power model
(Ptolemy II) information) TinyOS [36]
Prowler MATLAB <1000 Application (script)  GUI (data) None MATLAB for algorithm Inaccurate protocol, node,
testing and medium modeling
H-MAS Custom >100 Nodes, protocols GUI, event files None Inaccurate protocol and
(text) (data) medium modeling, no
modularity, scalability
SENSE Custom ~1000 Topology, traffic None® None Modular No output, inaccurate

(script)

medium modeling, no node
and sensing modeling
(continued on next page)
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Table 1 (continued)

Simulator Simulator engine Scalability Simulator input Simulator Final Benefits Deficiencies
output implementation
Sensor node simulators
TOSSIM Custom ~10,000 TinyOS code TinyViz, debug Directly Applicability of No energy
(data, node) code for mores modeling, same
code for all nodes
ATEMU Custom ~100 TinyOS code XATDB Directly Applicability of No sensing and
network, nodes debugger (debug code for mores energy models,
(XML) data) scalability
SENS Custom ~10,000 Node profiles GUI, text files Applications Scalability Only for
(text) (data, energy, directly applications, node
errors) and medium
models
TOSSF DaSSF (SWAN) ~10,000 TinyOS code, SWAN output®  Directly Scalability Inaccurate medium
SWAN model, no node
parameters and sensing
modeling
Em* EmSim Custom <100 Simulation case Debug traces Directly Applicability Inaccurate medium
(script) [37] (node) of code model, no node
and sensing
models, scalability
SNAP FPGA Emulator ~100¥ Configuration FPGA debug Directly Emulation Inaccurate medium
(for FPGA) interface (node) model, no sensing
modeling,
scalability
(1) J-Sim outputs simulation related data to an “instrument channel”, to which user can implement a custom UL
(2) No information about output is given, only results given show simulation times and simulator memory consumption.
(3) TOSSF 1/0 is not specified, but we assumed SWAN 1/O due to the relation.
4

4) SNAP emulators can be connected to increase scalability, but no evaluation is given.
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Generally, the networking oriented simulators
are more suitable for the network-wide evaluation,
whereas the strength of the sensor node simulators
lies in the testing and optimization of a single node
operation. From the related simulators, SensorSim
and sQualnet implement the most comprehensive
simulation environment. Compared to WISENES,
their battery and sensing models are currently more
accurate. The distinctive features of WISENES are
the complete design flow from the high abstraction
level graphical models to the final node implementa-
tion, the accurate full-scale simulations with config-
urable protocol stack and node platform models,
and the back-annotation of performance informa-
tion from real platforms.

3. Designing WSNs with WISENES

WISENES defines the rules and interfaces for the
WSN design and provides a library that contains
existing protocols and a set of implementations for
known functions. A reference WSN protocol stack
used in WISENES is depicted in Fig. 1 in correspon-
dence to the OSI model [38].

The key layer for WSN topology creation, chan-
nel access, and power management is the Medium
Access Control (MAC) protocol. The topology in
WSN:s is either clustered or flat. In a clustered topol-
ogy, nodes are grouped to clusters, in which a cen-
tral cluster headnode coordinates the networking
and associated subnodes. In a flat topology all
nodes are equal. A routing protocol creates multi-
hop paths for the end-to-end communication. A
middleware layer hides the heterogeneities of under-

WISENES WSN stack OSI stack
Application Application
layer layer
. Presentation
Middleware layer
Session
layer
Transport
layer
Multi-hop Network
routing protocol layer
Data link
MAC protocol layer
. . Physical
Transceiver unit layer

Fig. 1. WISENES WSN and OSI model protocol stacks.

lying protocol stacks and node platforms from
applications [1].

The composition of the protocol stack is net-
work and application dependent, thus all layers
are not mandatory in WISENES. The transceiver
unit at the physical layer is part of the WISENES
framework and the lowest layer protocol sends
data to the transmission medium through its
interface.

Multiple WSN applications can be simulated
simultaneously in WISENES. Applications are
designed as a set of tasks communicating together.
Tasks initiate sensing, perform data processing
and aggregation, and initiate data transfers. The
application layer, which implements a host environ-
ment for application tasks, is a part of the WISE-
NES framework.

Applications are implemented either in detail
using SDL or by a task graph. The task graph is a
simple data dependency graph described by the sim-
ulator input parameters. In addition to the task data
dependencies, it defines the task activation frequen-
cies, and task sensing and data characteristics. This
approach enables the testing of different types of
applications with minimum effort.

3.1. WISENES input and output

The input parameter and output result groups of
WISENES are summarized in Fig. 2. WISENES
input parameters are defined using eXtensible
Markup Language (XML), each parameter set hav-
ing a dedicated file with a pre-defined structure.

* Node parameters

* Transceiver unit parameters

* Peripheral parameters

* Protocol parameters

* Transmission medium parameters
* Sensing parameters

* Application parameters

file input (.xml)

WISENES

socket connection

O'\‘O\olo
GUI O/ xo ~

file output (.log)
y

* Power consumption
* Memory consumption
* Network performance * Node population ©
* Protocol performance * Network topology
* Application performance || * Node battery levels

Fig. 2. WISENES input parameter groups and output results.
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WISENES input parameters and their types

Parameter

Type

Description

Node parameters
Execution capacity
Instruction memory size
Data memory size
Power unit capacity
Active state power
consumption
Sleep state information

Harvesting capacity
Transceiver unit(s)
Peripherals

Node coordinates

Transceiver unit parameters
Throughput

Start-up transient period
Data loading information

Receiver power
Transmit power levels

Carrier sensing power

Peripheral parameters
Type

Phenomena
Relations
Activation time
Activation power

Integer (MIPS)
Integer (instruction)
Integer (byte)

Float (mAh)

Float (uW)

[Float, float] array (ms, ptW)

Float (uW)

Integer array (identifier)
Integer array (identifier)
Float array (m)

Integer (bps)
Float (ms)
[Integer, float] pair (bps, tW)

Float (uW)

[Integer, float] array (dBm,
uw)

Float (uW)

Constant string (identifier)

Integer array (identifier)
Integer array (identifier)
Float (ms)
Float (uW)

Protocol parameters (for each protocol layer)

Instruction memory
consumption
Data memory consumption

Transmission medium parameters

Signal attenuation curve

Minimum PER

Sensing parameters

Active phenomena

Limits

Application parameters

Task activation interval

Task data activation

Task data amount

Task data relations

Task peripheral relations

Instruction memory
consumption

Data memory consumption

Task executed operations

Task population

Integer (instruction)

Integer array (byte)

Float array (constant)
Float (constant)

Integer array (identifier)
Float array (dependent unit)

Float (ms)

Integer (constant)
Integer (byte)

Integer array (identifier)
Integer array (identifier)
Integer (instruction)

Integer array (byte)
Integer (constant)
Integer array (identifier)

Instructions CPU can execute in a second
Available instruction memory

Available data memory

Initial energy capacity in node battery
Consumed power in active state

Required idle time before activation and power consumption in sleep
state

Power node can harvest from environment

Transceiver unit(s) on the node

Peripherals attached to the node

Three-dimensional coordinates for node (x,y,z)

Transceiver unit data rate

Start-up transient time before receiver/transmitter is ready
Throughput and power consumption during transceiver to CPU
communication

Power consumption while receiver is active

Available transmit powers and corresponding power consumption

Power consumption during carrier sensing operation (if available in
transceiver)

Defines the peripheral type, e.g. sensor, ADC, location-finding system,
mobilizer

Phenomena the peripheral is related to, if sensor

Relations to other peripherals

Time the peripheral is active once activated

Power consumption when peripheral is active

Instruction memory required by the protocol layer

Protocol static and dynamic data memory consumption

Define signal attenuation curve coefficients (k, b, v)
Minimum PER in the transmission medium

Phenomena that can inspected
Lower and upper limits separately for each sensed phenomenon value

The interval between task activations

After how many activations task initiates a data transfer
The amount of data sent by the task

Task to which the data is sent

Peripherals required by the task

Task instruction memory consumption

Task static and dynamic data memory consumption

Executed operations per task activation

A list of node identifiers defining the nodes, in which the task binary is
located

Node parameters are given in two separate files. The
first defines the capabilities of node platforms, and

the other per-node platform type and node
coordinates.
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WISENES outputs information in two forms.
Detailed information about the simulated WSN
and nodes is collected to log files. Each protocol
and data event during a simulation is logged with
the parameters that define the cause and the conse-
quence of the event. Log data are written to per-
node directories, each protocol layer, application,
and a control instance modeling OS routines having
a dedicated .log-file. During an active simulation
run, the progress of a simulation is illustrated
through GUI presenting the node population, net-
work topology, and node energy level.

Input parameters at each group and their types
are presented in detail in Table 2. Node, transceiver
unit, and peripheral parameters define the capabili-
ties of sensor node platforms. Protocol related input
parameters define the static memory consumption
for each protocol, while the rest of the characteris-
tics are specified in the protocol SDL implementa-
tion. Transmission medium parameters define its
modeling and sensing parameters active phenom-
ena. An application task graph and an initial appli-

Table 3
WISENES output results and their types

cation task population are described in the
application parameters.

Table 3 shows the output results and their types.
As the events are logged as they occur, the momen-
tary values of the presented results are stored into
the logs. Depending on the type of the result, the
values are also accumulated or averaged to obtain

an overall knowledge about the system behavior.
3.2. WISENES user interfaces

WISENES has two Uls for controlling and mon-
itoring simulation runs. Simulations are started and
controlled through a command line interface. The
progress of the simulation and the topology of a
simulated WSN are visualized in WISENES GUI.
GUI is implemented in Java using Java foundation
classes Swing packages [39]. The communication
between GUI and WISENES is implemented by a
socket interface. A screenshot of GUI visualizing a
hundred-node TUTWSN simulation is depicted in
Fig. 3.

Result Type

Description

Power consumption (final and variation during time)

Total power consumption in node

Node, total Float (uW)
CPU Float array (W)
Transceiver unit Float array (uW)
Peripherals Float (uW)
Protocols Float array (uW)

Application tasks Float array (uW)

Memory consumption (final and variation during time)
Application tasks, instruction  Integer array (instructions)
Application tasks, data Integer array (byte)

Protocols, data Integer array (byte)

Network performance (averaged and variation during time)

Throughput Integer array (bps)
Delays Float array (ms)

PER Float array (constant)
Collisions Integer

Protocol performance (averaged and variation during time)
Delays Float array (ms)
Buffering Integer array (constant)
Throughput utilization Float array (constant)

Application performance (averaged and variation during time)
Delays Float array (ms)

Activation accuracy Float array (ms)

Data coherence Float array (constant)

Power consumption in CPU in execution and different sleep states
Transceiver unit power consumption in sending, receiving, and scanning
Peripheral power consumption separately for each

Power consumption in the execution of different protocols (network vs.
node)

Power consumption in the execution of application tasks (network vs.
node)

Instruction memory consumption in application tasks per node

Static and dynamic data memory consumption in application tasks per
node

Static and dynamic data memory consumption in protocols per node

Throughput per link in the network
Transfer delays per link

Packet error rate per link

Number of collisions in a node

Delays due to buffering and control in different protocol layers
Buffer lengths in the protocol
Utilized vs. available throughput

Communication delays between tasks
The variance in task activation times vs. to expected activation times
The accuracy and sufficiency of provided data
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Fig. 3. WISENES GUI screenshot from a hundred-node TUT-
WSN simulation.

Different node roles, in this case cluster head-
nodes and subnodes, are shown by different colors.
Remaining energy levels and the received signal
strengths of the active communication links are pre-
sented in a pop-up window when a node is selected.
By double clicking a node, its transmission ranges
with different transmit powers are illustrated. Fur-
thermore, nodes can be moved by dragging and
dropping them in GUI.

3.3. WISENES tools

A set of Tool Command Language (TCL) scripts
is implemented for WISENES initiation and result
handling. The initiation scripts facilitate a simula-
tion case construction from different protocols and
a random node population generation for large sim-
ulation cases. The possible relations between differ-
ent types of platforms can be given as a parameter
to the population generation script, e.g. in order
to force ten low power nodes in the vicinity of a
more powerful one.

The result handling scripts facilitate power con-
sumption, data packet tracing, and link utility eval-
uations. The power consumption information is
gathered from individual nodes and a listing defin-
ing detailed power characteristics for different com-
ponents in each node is created. The packet tracing
tracks the hops of a packet from its source to the
destination node, and determines the delays on dif-

ferent hops and protocol layers. The link utility
evaluates activity and congestion of node to node
connections.

4. WISENES framework

The WISENES framework consists of models for
transmission medium, sensing channel, sensor node,
and of a central simulation control that manages
simulations and handles simulator Input/Output
(I/0). Networking protocols and node platform
modeling are embedded to the sensor node model.

In addition to application tasks and protocols
described by the designer, SDL is used for the
implementation of the WISENES framework. The
tool used for SDL development is Telelogic [40]
TAU SDL Suite [41], version 4.5. The SDL suite
uses a graphical notation for SDL design, and pro-
vides tools for simulation, integration, and
implementation.

4.1. SDL introduction

SDL is used for designing systems ranging from
general software to embedded applications. MoC
in SDL is parallel communicating Extended Finite
State Machines (EFSM). SDL hierarchy has multi-
ple levels, of which the system level consists of a
number of blocks that clarify the representation.
They can be recursively divided into sub-blocks.
The behavior of a block is implemented in processes
described by EFSMs. The representation of a pro-
cess can be simplified by implementing a part of
the functionality in a procedure. Blocks and pro-
cesses can be implemented using the type concept
of SDL, which allows their instantiation. These type
definitions can be included with other type defini-
tions to SDL packages that facilitate modular sys-
tem design. The maximum number of instantiated
blocks must be defined at a compile time, whereas
processes can be created dynamically during run-
time [42].

Processes in a same or in different blocks commu-
nicate by asynchronous signals that can carry any
number of parameters. Each process has an infinite
First-In-First-Out (FIFO) buffer for incoming sig-
nals. Signal routes define which type of signals a
process can send and to which processes. An outgo-
ing signal is routed according to the signal route or
a Process IDentifier (PID). Communication
between processes can also be executed synchro-
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nously by calling remote procedures, which are
exported on the process interface [42].

Due to its formality, SDL can be automatically
converted for example to C source code, which
can then be used to make an executable application
or simulation. Telelogic TAU SDL simulation
engine supports discrete event simulations and real-
time simulations. In WISENES we utilize discrete
event simulation, in which events are processed
and handled in the order of occurrence. This makes
the time concept fully parallel and avoids an active
waiting during the idle times.

Environment functions are needed for the inter-
action between SDL and its execution environment.
Dedicated functions are defined for environment
initialization, unloading, signal output, and signal
input. The output function is called when a signal
is sent from the SDL system to the environment.
Because a method for interruption is absent in
SDL, the input function must be polled for receiving
signals from the environment. In Telelogic TAU
SDL simulation engine, the input function is called
after every transaction, which is an execution flow
from a state to another triggered by an incoming
signal. An SDL procedure can be substituted by
an external function, in a case where SDL lacks
expressivity or a more efficient implementation is
desired. Both environment and external functions
are implemented in C for WISENES.

4.2. WISENES instantiation

The instantiation of WISENES is depicted in
Fig. 4. The designer selects the protocols from the
library or implements new ones in SDL and inte-
grates them to the WISENES framework. The
upper and lower interfaces of the protocol stack
are the pre-defined interfaces to the application
layer and transceiver unit, respectively. Application
functionality is either implemented as SDL proce-
dures or described by a task graph.

The protocol stack consists of data link, network,
and middleware layers that are instances of block
types implemented in SDL packages. The interfaces
between the layers are fixed, but a layer can be
bypassed, i.e. a network layer can communicate
with the application layer at its upper interface.
The internal implementation of layers is not
restricted in any way.

Node platforms are parameterized in the XML
configuration files that are parsed by Central Simu-
lation Control. The parameters are passed to Sensor

XML configuration files ; SDL implementation
- Sensing | [_Protocoln |

0 Protocol n-1 _

Protocol 0 |

Jaubiseq

[ Transceiver unit
| Peripheral

I

I Protocols | I
|
K

—————r----

1S [ Sensing channel ]
1 .__f t
Sensor node model
Node | [ Sensor |+ (ARPlication layer]|
Central control| [interface| : !
simulation L) t ‘
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Node - »
H»  simulation

control ~ » Transceiver unit

o Transmission medium |
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| Environment functions |
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| Socket interface | Simulator execution environment |

’ —» Parameters —> SDL <« Commands Data ‘

Fig. 4. The architecture of WISENES instantiation.

Node model. Node coordinates are relayed also to
Transmission Medium and Sensing Channel, both
of which have also dedicated parameters.

The interfacing of WISENES GUI is imple-
mented in environment functions that maintain
the socket connection. Information to GUI is
updated only periodically in order to lessen commu-
nication. A data structure that defines sensor node
parameters is sent to the environment functions as
a signal parameter and parsed to the socket.

The SDL system of WISENES framework is
illustrated in Fig. 5. The framework consists of
SDL blocks that implement the main functional
models and the central simulation control. The sen-
sor node is a dynamic block of type Node_Type, and
the number of its instances is specified by NODE_
COUNT. The figure depicts also the signal routes
between the blocks and a dedicated signal route to
the environment.

4.3. Central simulation control

The central simulation control initiates the
WISENES framework, controls active simulation
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Fig. 5. The SDL system level of WISENES framework.

runs, and performs event logging. The information
gathering for the control and logging is imple-
mented in remote procedures that are presented
with their parameters in Table 4.

The input parameters of UpdateNodelnformation
procedure specify the node identifier, current bat-
tery level, role, and the connectivity to other nodes.
The node role defines whether a node is a headnode,
a subnode, or a sink. Sensor nodes call the proce-
dure whenever any of the parameter values changes.
The information is relayed to GUI and utilized for
determining whether the simulation end condition
is satisfied. The end condition is set by the designer
and it defines a simulation time limit, a percentage
of dead nodes, or e.g. a limit for an application task
activation count.

Distinct remote procedures for event and data
packet logging are exported for each protocol layer,
application tasks, and for framework components.
Their parameters vary depending on the layer. Logs
are stored in dedicated data structures and written
to files either periodically when WISENES memory
consumption exceeds a pre-defined limit, or at the
end of the simulation.

Table 4
The remote procedures exported by the central simulation control

Parameters

Nodeld, NodeRole, BatteryState,
TransceiverUnit, Connectivity

Procedure

UpdateNodelnformation

LogXxxEvent Nodeld, EventName, Cause,
Consequence, ...

LogXxxData Nodeld, Packetld, DatalLength,
DataAction, ...

4.4. Transmission medium

The transmission medium model provides the
connectivity between sensor nodes. It is imple-
mented as an SDL process that redirects signals
from a source to the destination sensor node SDL
blocks. Sensor nodes register their node identifier
and transceiver unit PID to the transmission med-
ium for enabling the data redirecting. Due to the
nature of SDL data typing, transmitted data are
separately copied for each destination node.

The signal propagation in the transmission med-
ium is based on the transceiver unit dependent sig-
nal attenuation. The curve S defining the Packet
Error Rate (PER) is

S—M—(h%Q, (1)

where d is the distance between the source and des-
tination nodes (m), and P is the transmit power
(dBm). Constants k, b, v are derived from the mea-
sured signal attenuation curve. PER for a packet is

1, ifS>1
PER={S, ifL<S<1y, (2)
L, ifS<L

where L is the lower limit for the PER.

In order to realistically model the hidden node
problem and collisions, S is calculated separately
for each node within the coverage of the transmis-
sion. The transmit power is specified by the source
node. After the PER evaluation, a random number
0<r<1 is generated again separately for each
node. A transmission is successful, if » > PER. If
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S > 1, the signal attenuates during the transmission,
otherwise the signal is relayed to the destination. If
S <1 and r < PER, the unsuccessful transmission is
indicated to the recipient but the copying of the
actual data is not performed.

A delay during a transmission is calculated by
dividing the packet length by the transceiver unit
throughput. The delay of the signal propagation in
the medium is omitted. Thus, a packet is relayed
to the destinations immediately after the transfer
delay.

4.5. Sensing channel

The sensing channel model simulates physical
phenomena. Similarly to the transmission medium,
the sensing channel utilizes node coordinates.
Each phenomenon is modeled separately with indi-
vidual propagation characteristics. The propagation
depends also on the media in the vicinity.

Our current sensing channel implementation gen-
erates random stimuli for phenomena, except for
the location queries that return node coordinates.
The upper and lower limits are defined for each
phenomenon. Currently simulated phenomena are
temperature, humidity, vibration, sound, luminance,
and location information. The selected approach is
applicable for environmental monitoring, but a
more detailed sensing channel must be implemented
for e.g. object tracking applications.

4.6. Sensor node

The sensor node SDL block implementing the
node model is depicted in Fig. 6. On the sensor node
model, Physical layer, Sensor Interface, Application
Layer, and Node Control blocks are part of the
WISENES framework, while the instantiated proto-
col layers are selected or implemented by the
designer. The signal routes between the protocol
layers are for data communications, whereas the sig-
nals sent from the node control to the other blocks
are for the initiation and shutdown.

4.6.1. Physical layer

A transceiver unit process at the physical layer
models the hardware and its device driver. The pro-
cess implements the interface to the transmission
medium, performs collision detection, and models
the internal delay in a transceiver unit. Depending
on the modeled hardware, additional features such
as Cyclic Redundancy Check (CRC) [38] for error

detection or an algorithm for encryption are incor-
porated to the model. No real CRC or encryption
calculation is performed, but the data consistency
is validated from the parameters of the signal
received from the transmission medium. The upper
interface of the transceiver unit defines signals for
the lowest protocol layer. Dedicated signals are
declared for the transceiver unit control, transmitter
or receiver enabling, carrier sensing, data sending,
send confirmation, and data reception indication.
Transferring data to or from the transceiver unit
causes delay, because a transceiver unit is typically a
distinct hardware component on a node platform. A
delay, which is calculated by dividing the data
length in bits by the interface bit rate, is generated
when data is loaded to or from transceiver unit.

4.6.2. Sensor interface

The sensor interface block implements a process
that models the Analog-to-Digital Converter
(ADC) and sensor operations. When an application
task initiates sensing, it sends a signal to the sensor
interface process. The process activates the sensor
and other required peripherals (e.g. ADC for sam-
pling the analog sensor output) for that phenome-
non. The sensor interface process acquires a value
from the sensing channel by signal exchange. The
operation delay depends on the associated sensor
and possibly on the ADC sampling frequency,
which are defined in the input parameters. The used
peripherals are reserved during the operation.

4.6.3. Application layer

The application layer consists of a process that
implements the scheduling of application tasks. This
approach is selected to facilitate the task scheduling
when they are implemented as SDL procedures.
When an application is described as a task graph,
the application layer process emulates the execution
of tasks. In this case no real functionality apart
from the sensing and data transfer initiation is
implemented.

The application task procedures are implemented
by the designer. They define the functionality of the
tasks, while the task state control and scheduling are
implemented in the application layer process. Task
state is running when it is executed, ready when it
is ready for execution but another task is running,
or wait when the task requires either a timer, data,
or sensor event to occur before running. Supported
scheduling algorithms are round robin and static
priority scheduling.
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Fig. 6. The SDL block type for WISENES sensor node.

When a task is ready and scheduled for process-
ing, the application layer process calls the procedure
that implements the task. The event that moved the
task to the ready state and the payload associated to
the event are given in the parameters of the proce-
dure. When the task completes its next transition
it enters to the wait state. The waited event is
returned to the application layer process. In occur-
rence of an event, all tasks waiting for it are set to
the ready state.

4.6.4. Node control

The node control block consists of two processes,
Node control and Node simulation control. The node
control process implements OS routines in WISE-
NES. The possible states of a sensor node and the

actions triggering node state transitions are depicted
in Fig. 7. When the node is in an active state, its
Central Processing Unit (CPU) and transceiver unit
are powered. Transceiver unit dependent states
receiving and transmit are substates of the active
state. The node enters to a transceiver sleep state,
when its transceiver unit is not needed during a con-
stant period. When there is nothing to process on
CPU, the node is set to a sleep state that depends
on the length of the inactive period. The periods
and corresponding sleep states are defined in the
input parameters. Tasks can be executed and sens-
ing activated when the node is in the active state,
one of its substates, or in the transceiver sleep state.

The remote procedures exported by the node
control for implementing OS routines are presented
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Fig. 7. Sensor node states and state transitions in WISENES.

in Table 5. Periodically activated protocols and
application tasks call SetNextActiveTime procedure
to indicate their next wakeup time. When all proto-
cols and application tasks are inactive, the node
control sets the node to a sleep state. The memory
management for application tasks and protocols is
implemented in Reserve Memory and Free Memory
procedures. Protocols and applications reserve
CPU time slots by calling Execute procedure. The
executed operations are given as a parameter. A
protocol may check remaining energy resources of

Table 5
The remote procedures exported by the node control and node
simulation control

Procedure Parameters

Node control

SetNextActiveTime CallerId, ActivationTime,
TransceiverUnitControl
ReserveMemory Callerld, Type, Amount
FreeMemory Callerld, Type, Amount
Execute Callerld, OperationCount

GetCurrentBatteryLevel Returns CurrentLevel

Node simulation control
UpdateNodeRole
UpdateConnectivity

NodeRole
NearbyNodelds,
NearbyNodeSignalStrengths
Peripheralld,
ActivationTime
ConsumeTransceiverSendPower ~ SendBytes
ConsumeTransceiverReceivePower Type,
ReceiverActivationTime
SetNodeState State
MarkActiveExecution Callerld, OperationCount
GetRemainingEnergy Returns RemainingEnergy

ConsumePeripheralPower

the node by
procedure.

The Node simulation control implements a per-
node interface to the central simulation control
and models the power consumption of node plat-
form. In the initiation, the node simulation control
relays node parameters in signal parameters to the
node control and to the different layers. During an
active simulation run, the node simulation control
gathers GUI related information from the node
and passes it to the central simulation control.
Remote procedures that implement the gathering
are presented in Table 5. UpdateNodeRole and
UpdateNode Connectivity must be called from proto-
cols that possess the required information.

The node power consumption modeling is imple-
mented in the node simulation control by a linear
battery model, in which the component power con-
sumption is independent of the battery discharge
rate. The remote procedures related to the power
consumption are called only from the SDL pro-
cesses that are part of the WISENES framework.
The sensor interface process indicates a peripheral
activation by calling Consume PeripheralPower pro-
cedure. Procedures ConsumeTransceiverSendPower
and ConsumeTransceiver ReceivePower are called
by the transceiver unit process when a transmitter
and a receiver are activated, respectively. The node
control marks the node state transitions by calling
SetNodeState and indicates the execution by calling
Mark ActiveExecution. GetCurrentBatteryLevel pro-
cedure in the node control calls GetRemaining Ener-
gy to determine the battery level.

The power consumption in a sensor node can be
divided into a very detailed level, as peripherals,
protocols, and application tasks can be identified
when they indicate their activation by calling a ded-
icated remote procedure. The power consumption
by the transceiver unit can be split between the
transmission and reception, while CPU power con-
sumption can be assigned to the different states,
and to the application tasks, protocols, and device
drivers.

The harvesting of energy from the surroundings
is modeled in the node simulation control, if such
a peripheral is available at the node platform. The
generated energy is randomized between 0 and the
harvesting capacity limit specified in the input
parameters. When a sensor node runs out of energy,
the node simulation control removes the node from
the transmission medium and indicates this to the
central simulation control.

calling  GetCurrentBattery Level
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4.7. Prototype mapping in WISENES

The accurate parameterization of sensor node
platforms in the XML configuration files and the
detailed capability modeling in the WISENES
framework lead to the simulation results that corre-
spond to those obtained from real node platforms.
We refer the parameterization of hardware plat-
forms and their modeling in the simulator to as pro-
totype mapping.

The exact modeling of node and peripheral state
changes, and the detailed specification of the node
power characteristics in the input parameters result
in realistic mapping of the power consumption. For
a fine-grained power consumption mapping of pro-
tocol and application execution, the number of exe-
cuted operations given as a parameter to Execute
procedure must be estimated during the initial
design phase. For the further evaluation, bench-
marking information from the prototype measure-
ments is utilized.

The memory and processing capacities of the
node platforms are defined in the input parameters.
The static instruction and data memory usage of
protocols and applications is parameterized,
whereas the dynamic data memory consumption
depends on the data buffering and control con-
structs stored within each protocol layer. The pro-
cessing capacity is controlled by Execute
procedure in the node control.

The delays in the data transmissions are modeled
in the transmission medium and in the transceiver
unit. This approach considers the transfer delay
and the internal processing delay of the transceiver
unit, but omits the signal propagation delay in the
transmission medium.

4.8. Simulation of node code implementations in
WISENES

In addition to the simulation of node models that
are composed of protocols implemented in SDL,
WISENES contains a prototype emulation environ-
ment, which allows the simulation of low-level C
implementations that are directly applicable for
node prototypes. Similarly to sQualnet [15], the C
code implementation is integrated above the data
link layer by a dedicated network layer SDL block.
This block consists of a process that redirects the
per-node signals received from the data link layer
to the emulation environment and vice versa, and
implements the timer concept for the emulation.

When an SDL block in WISENES is created for
a node, the prototype emulation environment cre-
ates a simulator host OS thread for the node and
associates the thread to the node id. On the recep-
tion of a signal from the data link layer, the SDL
block calls a signaling function from the prototype
emulation environment. The emulation environ-
ment redirects the signal to the correct thread and
converts the signal parameters to a function call
or to a message for the final C implementation.
After the subsequent processing is completed, the
SDL block calls a query function at the emulation
environment. The query function gathers the events
caused by the received signal and passes them back
to the SDL block. The indications related to timers
are handled similarly.

The current version of the prototype emulation
environment in WISENES supports TUTWSN C
code implementations. The required effort for port-
ing the emulation environment core to support
other platforms is minimal. Only the interface pro-
vided by the emulation environment for the C code
needs to be adapted.

5. WISENES use-cases: TUTWSN and ZigBee

WISENES is used for the design and evaluation
of two use-cases: proprietary TUTWSN and a stan-
dard ZigBee network. In both, the design starts
from scratch and ends up to extensive performance
simulations. Prototype platforms for both cases are
parameterized using the XML configuration files
and the protocols are designed and implemented
in SDL.

5.1. TUTWSN implementation

TUTWSN is a very energy efficient WSN tar-
geted to low data rate applications, such as environ-
mental and industrial monitoring [4]. TUTWSN
consists of a configurable full feature protocol stack,
a family of physical node platforms, and several
GUIs for the network management and
visualization.

5.1.1. TUTWSN protocol stack

The TUTWSN protocol stack in WISENES con-
sists of a middleware, a multi-hop routing protocol
at the network layer, and a MAC protocol at the
data link layer. TUTWSN MAC is an energy effi-
cient clustered protocol that minimizes the time
spent in a receiving state per a node. Time Division
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Multiple Access (TDMA) is used for the intra-clus-
ter communication, whereas neighboring clusters
operate on different frequency channels. The control
signaling, not the data transfers, for the inter-cluster
communication is performed on a dedicated net-
work signaling channel.

At the beginning of each access cycle a cluster
headnode broadcasts an active network beacon to
the network signaling channel. Other headnodes uti-
lize the beacon for the multi-hop routing, whereas
subnodes listen the channel only when they are
searching for a cluster for the association. Neighbor
discovery times are shortened by idle network bea-
cons that are sent during the inactive period of the
access cycle. An idle network beacon indicates the
time of the next active network beacon.

The communication within a cluster is performed
during a superframe consisting of cluster beacons,
aloha slots for contention, and reservation data
slots. The inter-cluster data transfers are made dur-
ing the superframe of the recipient headnode. Clus-
ter beacons start a superframe by informing the
associated nodes of the allocated reservation data
slots and access cycle timing. Subnodes listen the
beacons but sleep the rest of the access cycle, unless
they have data to process. In the contention slots,
subnodes and neighbor headnodes send occasional
data and slot reservation requests to the cluster
headnode. The reservation data slots are allocated
for periodical data transfers. Each slot consists of
an uplink for data sending to the headnode and of
a downlink for acknowledgements and data sending
to the associated node.

The TUTWSN MAC protocol in WISENES
implements a self-organizing cluster creation algo-
rithm, and intra-cluster and inter-cluster communi-
cation. For the inter-cluster communication, the
cluster access cycle timing can be adapted according
to the routing protocol needs. In order to minimize
the delay, the start time of the own access cycle is
adjusted so that the superframe is completed right
before the start of the access cycle of the next hop
cluster. The length of a slot is 20 ms, uplink and
downlink being both 10 ms. The access cycle length,
and the number of contention and reservation data
slots are varied.

The flooding routing protocol is implemented for
the multi-hop path creation. Route requests are
broadcast to the network until a path to the destina-
tion is found. In order to avoid unnecessary com-
munication, the route requests are identified so
that duplicates can be discarded. Further, the neigh-

boring information from the MAC layer is utilized.
If a node knows a valid route to the destination, it
initiates a response. Each node stores only the
address of the next hop and the total hop count
for each destination.

The TUTWSN middleware layer controls the
application task hosting in sensor nodes and
abstracts the communication between tasks. The
middleware keeps track of the neighbor nodes,
which host tasks that are related those tasks hosted
by the node itself. When a task sends data to
another task, the middleware redirects the data to
the correct node.

5.1.2. TUTWSN prototype platform

The TUTWSN prototype used in the simulations
is depicted in Fig. 8. The main component on the
prototype is a 2 MIPS Xemics XESSLCO02 [43]
MicroController Unit (MCU) consisting of a Cool-
Risc 816 processor core, a 16-bit ADC, 22 KB pro-
gram memory, and 1 KB data memory. 2.4 GHz
NordicVLSI nRF2401 transceiver unit [44] on the
prototype supports 250 kbps and 1 Mbps data rates
with transmit power adjustable between —20 and
0dBm. A 16-bit CRC error detection is imple-
mented in the transceiver unit. For the environmen-
tal monitoring, the prototype has an integrated
MAX6607 temperature sensor. A 0.22 F capacitor
is used as the energy storage for the prototype.

The mapping between the TUTWSN prototype
and the WISENES sensor node model is depicted
in Fig. 9. The TUTWSN protocol stack for the pro-
totype is implemented in C and executed on Xemics
MCU. In WISENES, it is implemented in SDL on
the sensor node model. Application tasks run on
top of the protocol stack. A lightweight OS that is
implemented in C controls the scheduling and
power management on the prototype. In WISE-
NES, its functions are modeled by the node control.

The nRF2401 transceiver unit and its device dri-
ver are implemented by the transceiver unit process

Fig. 8. TUTWSN Xemics prototype.
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Fig. 9. The prototype mapping between the WISENES sensor node model and TUTWSN prototype.

in WISENES. The sensor interface process models
the sensors, ADC, and their device drivers. The
power model in the node simulation control simu-
lates the power unit and the power consumption
of the hardware components.

Fig. 10 gives an example of the XML configura-
tion parameters that specify the presented
TUTWSN prototype for WISENES. A dedicated
parameter set for a sensor node is assembled from
the node type parameters (a), transceiver unit
parameters (b), peripheral parameters (c), and node
parameters (d). The transceiver unit dependent sig-
nal attenuation curve constants for nRF2401 are
following: k=0.2385, b=2.7, v=18.0, and
L =0.03. These are obtained by measuring PER
for different distances and deriving the values from
the results.

5.2. ZigBee implementation

ZigBee [5] is a networking architecture targeted
to low-cost and low-power monitoring and control
applications. Although not directly designed for
WSNs, many of its characteristics have encouraged
its use also in WSN scenarios. The topology in a
ZigBee network can be either star or mesh. In the
star topology, a single ZigBee coordinator controls
the whole network, whereas in the mesh topology,
nodes communicate directly through peer-to-peer
links. A special type of a mesh network is a clus-
ter-tree topology, in which a coordinator starts the
network but other coordinators (referred also to
as ZigBee routers) can extend the network. In the

following, we concentrate on the cluster-tree topol-
ogy, because it is the only alternative for the low-
power WSNs and the closest to the TUTWSN
use-case.

5.2.1. ZigBee protocol stack

The ZigBee protocol stack defined in the specifi-
cation consists of a MAC protocol, network layer,
and application layer. WISENES implements a full
featured version of the IEEE 802.15.4 Low-Rate
Wireless Personal Area Network (LR-WPAN)
MAC protocol [45] for ZigBee, and a simplified ver-
sion of the ZigBee networking layer. The same mid-
dleware layer as in TUTWSN is used on top of the
ZigBee protocols.

The ZigBee MAC in the cluster-tree topology
networks uses a beacon-enabled channel access. A
ZigBee network is started and its parameters defined
by a ZigBee coordinator. When joining to a net-
work, a ZigBee router starts transmitting beacons
on the same communication channel with the
parameters advertised by its parent. The beacon is
followed by a Contention Access Period (CAP) for
Carrier Sense Multiple Access (CSMA) data trans-
fers. Periodic data transfers between the ZigBee
coordinator and a child device can be made in
guaranteed time slots during a Contention Free Per-
iod (CFP) that follows CAP in the superframe of
the ZigBee coordinator. The length of the access
cycle (beacon period) and the superframe (CAP per-
iod) depends on the constants BeaconOrder and
SuperframeOrder that are defined by ZigBee
coordinator.
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<node_type id="1">

<name>TUTWSN Xemics Node</name>

<type>FFU</type>

<cpu_info>
<capacity>2000000</capacity>
<code_memory_inst>8000</code_memory_inst>
<data_memory_byte>1024</data_memory_byte>

</cpu_info>

<battery>
<voltage_V>3.0</voltage_V>
<capacity_mAh>0.57</capacity_mAh>
<efficiency>0.8</efficiency>
<harvest_uW>0</harvest_uW>

</battery>

<state_info>
<state name="active” ms="0" uW="1350"/>
<state name="node sleep” ms ="3” UW="19"/>

</state_info>

<transceiver_unit id="1"/>

<peripheral_info>
<peripheral id="1" count="1"/>
<peripheral id="2" count="2"/>

</peripheral_info>

</node_type>

<transceiver_unit id="1">
<name>nRF2401</name>
<throughput_bps>1000000</throughput_bps>
<rssi capability="NO"/>
<data_load_info bps="230400" uW="1310"/>
<receiver_info transient_ms="0.25" uW="43600"/>
<transmitter_info>
<transient_ms>0.25</transient_ms>
<tx_power_levels>
<tx_power dBm="-20" uw="18700"/>
<tx_power dBm="-10" uW="23500"/>
<tx_power dBm="-5" uW="26400"/>
<tx_power dBm="0" uW="29300"/>
</tx_power_levels>
</transmitter_info>
<carrier_sense_info capability="NO"/>
</transceiver_unit>

b

a

<peripheral id="1" phenomenon="NONE”">
<name>ADC</name>
<dependency id="0"/>
<active_period ms="0.5" uW="15"/>

</peripheral>

<peripheral id="2" phenomenon="TEMPERATURE”">
<name>Temperature sensor</name>
<dependency id="1"/>
<active_period ms="0.1" uW="10"/>

</peripheral>

<node_list count="5">
<node id="1" type="2">
<coordinates x="0.0" y="0.0" z="0.0"/>
</node>
<node id="2" type="1">
<coordinates x="7.23" y="3.4" z="0.72"/>
</node>
<node id="3" type="1">
<coordinates x="8.4" y="-5.21" z="1.03"/>
</node>
<node id="4" type="1">
<coordinates x="15.4" y="-8.53"” z="1.76"/>
</node>
<node id="5" type="1">
<coordinates x="22.4" y="0.21" z="0.93"/>
</node>
</node_list>

Cc

d

Fig. 10. TUTWSN prototype: (a) node type, (b) transceiver unit, (c) peripheral and (d) node parameters for WISENES.

Each child device communicates with its parent
coordinator during CAP. All transactions must be
completed before the end of CAP. Before a trans-
mission, a random back-off period is waited. After
the back-off, the state of the transmission medium
is assessed. If the medium is busy, the back-off pro-
cedure continues. If a coordinator has data pending
for its child devices, it indicates the identifiers of
these child devices in the beacon. When a device
receives a beacon listing its address, it sends a data
requests to the coordinator, after which the trans-
mission of data is made.

The ZigBee networking layer in WISENES
implements a mechanism for joining and leaving
the network, the algorithms for the cluster-tree
topology formation, and data routing from devices

to the ZigBee coordinator. The routes are created
according to parent associations, i.e. each ZigBee
router sends data targeted to the ZigBee coordina-
tor to its parent. The continuous neighbor discovery
and the support for other network topologies are
not implemented. Further, the short address assign-
ment and superframe scheduling algorithms benefit
the simulator addressing and timing information.

5.2.2. ZigBee prototype platform

The prototype platform used in WISENES for the
ZigBee evaluation is constructed from two separate
components. The MCU module of the prototype is
2 MIPS PIC18LF4620 MCU [46] with 64 KB of pro-
gram and 4 KB of data memory, an integrated 10-bit
ADC, and an interface to MAX6607 temperature
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<node_type id="1">

<name>ZigBee PIC node</name>

<type>FFU</type>

<cpu_info>
<capacity>1000000</capacity>
<code_memory_inst>32768</code_memory_inst>
<data_memory_byte>3986</data_memory_byte>

</cpu_info>

<battery>
<voltage_V>3.3</voltage_V>
<capacity_mAh>2100</capacity_mAh>
<efficiency>0.91</efficiency>
<harvest_uW>0</harvest_uW>

</battery>

<state_info>
<state name="active” ms="0" uwW="3010"/>
<state name="node sleep” ms =“2”" uW="30"/>

</state_info>

<transceiver_unit id="2"/>

<peripheral_info>
<peripheral id="1" count="1"/>
<peripheral id="2" count="2"/>

</peripheral_info>

</node_type>

<transceiver_unit id="2">
<name>CC2420</name>
<throughput_bps>250000</throughput_bps>
<rssi capability="YES"/>
<data_load_info bps="460800" uW="1310"/>
<receiver_info transient_ms="0.22" uW="54820"/>
<transmitter_info>
<transient_ms>0.22</transient_ms>
<tx_power_levels>
<tx_power dBm="-15" uW="28300"/>
<tx_power dBm="-10" uW="31400"/>
<tx_power dBm="-5" uW="37600"/>
<tx_power dBm="0" uW="46400"/>
</tx_power_levels>
</transmitter_info>
<carrier_sense_info capability="YES” uW="54200"/>
</transceiver_unit>

a

b

Fig. 11. ZigBee prototype: (a) node type and (b) transceiver unit parameters for WISENES.

sensor. The transceiver unit is 2.4 GHz Chipcon
CC2420 transceiver [47], which is IEEE 802.15.4
standard compliant. The transceiver support
250 kbps data rate and the transmit power is adjust-
able between —24 dBm and 0 dBm. A CR123A lith-
ium battery is used as an energy storage.

Although the prototype is assembled with two
distinct components, the resulting platform is realis-
tic. MCU has enough resources for the ZigBee
implementation. The power consumptions of the
components are measured separately, but they are
combined in WISENES. The transceiver unit
parameters are measured using a Chipcon SmartRF
CC2420DK Development Kit [47]. The constants
for the transmission medium are: k= 0.08,
b=34, v=6.0, and L=0.05. The WISENES
XML configuration parameters describing the pro-
totype node type (a) and transceiver unit (b) are
depicted in Fig. 11.

6. WISENES evaluation

The design of a new protocol and the deployment
of a complete WSN protocol stack in WISENES are
straightforward for the designer due to the hierar-
chical structure of SDL and the modularity of the
WISENES framework. The graphical design based

on state machines is well-suited for the protocol
modeling. The modeled protocols are internally
independent of WISENES, but an external interface
for the adaptation of each layer to the WISENES
framework is required. Interface templates are pro-
vided for the designer.

For the usage evaluation, the full feature ZigBee
MAC protocol was implemented according to the
specification by a single designer within two work-
ing weeks. The designer was familiar with the
WISENES interfaces, but still the development
cycle was faster than expected. The SDL description
attached to the IEEE 802.15.4 standard was too
incomplete to be used in WISENES.

The full implementation of the ZigBee MAC
protocol in WISENES consists of three processes
having totally 31 different states. In addition, 75
SDL procedures are implemented in order to avoid
redundant implementations and clarify the descrip-
tion. The number of state transitions in the imple-
mentation is 163. Among the transitions, there are
in total 1817 divergent execution paths. The imple-
mentation of TUTWSN MAC protocol in WISE-
NES consists of two processes that have totally 21
states and 32 procedures. The number of state
transitions is 112, but there are still 2642 divergent
execution paths.
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The simulation and evaluation capabilities of
WISENES are assessed by simulating TUTWSN
and ZigBee networks. The application used in the
simulations is an environmental monitoring applica-
tion. All nodes in WSN observe the temperature in
their vicinity. Sensed data are aggregated in cluster
headnodes (coordinator) and routed for a further
processing to the sink node (ZigBee coordinator).
The application is implemented by describing it as
a task graph.

The evaluated aspects in WISENES are the per-
formance of the simulator, applicability for the
large scale simulations, and the accuracy of the pro-
totype mapping. All simulations are executed on a
workstation with a 2.8 GHz Pentium4 processor
with 1 GB of memory and running Windows XP
SP2. WISENES memory consumption is limited to
150 MB, meaning that gathered log data are written
to files when the limit is exceeded.

6.1. WISENES performance

TUTWSN simulations are repeated five times
with 10, 100, and 1000 of nodes. The node popula-
tion is randomly generated for each simulation run.
Monitored aspects are the correct functionality and
performance. The initial energy capacity of a TUT-
WSN node is set twenty times larger than specified
in Fig. 10 in order to obtain required lifetime. The
TUTWSN access cycle in simulations is 10 s, and
each node measures temperature once in an access
cycle and sends the result towards the sink node.
Headnodes aggregate the subnode readings to a sin-
gle data packet.

The presented WISENES performance is the
time elapsed for the simulation of a single node
for a 24-h period. During that time, a node initiates
8640 data packets. The resulting time is obtained by
dividing the overall network simulation time by the
node count. The elapsed per-node simulation times
with and without GUI are depicted in Fig. 12. In
addition, the time consumed on writing the log data
to files is presented separately.

The operations on a single node remain similar
regardless of the node count. Hence, the simulation
time per a node should be at the same level in all
cases. However, as depicted, the time per node
increases as the node count increases. This is caused
by the increased time consumption in the processing
of longer lists in both Telelogic TAU SDL Suite
simulation engine and WISENES framework com-
ponents. The communication with GUT is time con-

250

O Simulation, No GUI R
O Simulation, GUI
200 {®Logging

1504 - - —— - —— - - - - - - - - - - — -~ - - -

Time (s)

100f - - - ——--——--———-——————-— -~ - - -

50f - - - -------

10 ' 100 ' 1000
Sensor Node Count

Fig. 12. Time required for the simulation of a single node in
WISENES for a 24-h period with varying total number of nodes.

suming but the penalty is independent of the node
count. The increase in the simulation time is caused
by the environment function polling and the large
amount of node information passed through the
socket interface.

As depicted in Fig. 12, the time consumed on log
writing with 1000 node simulations is ten times
longer than in the other cases. A reason for this is
not accurately known, but it may be due to the frag-
mentation of the storage disk, because the size of the
logged data in this case is over 12 GB.

6.2. Prototype mapping results

For the evaluation of the prototype mapping
accuracy, a similar configuration, illustrated in
Fig. 13, is constructed for both WISENES and pro-
totypes. Subnodes S1 and S2 perform sensing and
send the data to headnode H1 once in every access
cycle. Headnode H1 aggregates data and sends them
to the sink node through headnode H2. The number
of contention slots is four, reservation data slots are
limited to eight, and idle network beacons are sent
every 250 ms. The access cycle length is 1, 2, 5,
and 10 s. Cluster scanning is avoided by using static
access cycle timings.

@ Sink node

(O Headnode
,

(O Subnode
@" — Aggregated data
---- Sensed data

Fig. 13. Static topology for the prototype mapping test case.
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Fig. 14. Modeled WISENES and measured TUTWSN prototype
power consumptions in the prototype mapping test case.

Fig. 14 presents the simulated power consump-
tion from WISENES in contrasts to the measured
prototype power consumption. Generally, the
power consumption in subnodes is minimal com-
pared to that of headnodes. The margin between
the two headnodes is not considerable, because the
only difference in their activity is one active reserva-
tion data slot. When compared to the prototype
measurements, the WISENES results are very accu-
rate. The overall average difference is 6.73%. The
results are more accurate for headnodes, average
difference being 4.0% for H1 and 4.8% for H2.
Due to the very low activity, the modeling in sub-
nodes is more inaccurate, as the average difference
in case of S1 is 11.34%. The main reason to this is
the differences in the timing models of WISENES
and the prototypes.

Other aspects related to prototype mapping are
delay and throughput. As mentioned, WISENES
models delays in the transmission medium and
transceiver units accurately. Only the delay of signal
propagation is omitted, but it is negligible in short
distances when compared to the other delays in
transmissions. Moreover, the main causes for the
delays on WSNs are higher layer protocol buffering
and channel access. Thus, the verification of the
delay mapping is omitted.

WSNs do not utilize the full bandwidth available
on their transceiver units but only a small fraction
of it. The throughput depends on the channel access
method and PER. In WISENES, PER is derived
from the transceiver unit dependent measurements
and the implemented channel access methods are
identical. Hence, the further verification of the
throughput mapping is also omitted.

6.3. TUTWSN simulation results

A network of thousand nodes is simulated in
order to evaluate the applicability of TUTWSN in
large scale. The number of contention slots is set
to four, reservation data slots to eight, and idle net-
work beacons are sent every 250 ms. The access
cycle length is 1, 2, 5, and 10 s. The environmental
monitoring application is again activated once in
an access cycle.

6.3.1. Power consumption

The average power consumptions for five arbi-
trary selected headnodes and subnodes are depicted
in Fig. 15a and b respectively. The scale in Fig. 15a
is approximately eight times larger than in Fig. 15b.
The power consumptions of the transceiver unit,
peripherals, power unit, and MCU in sleep and
active states are presented separately.

a 1500
O Transceiver
@ Peripherals
12004 |- B MCU, sleep
O MCU, active
= W Power unit
g 904 |-
5}
g 600 e I R
o
300 1 - - - - - - -
0-.,1—;
1 2 5 10
Access cycle length (s)
b 180
O Transceiver
16011t O Peripherals
1404-{  f-------- = B MCU, sleep
1204 O MCU, active
P B Power unit
Seo
5} 1 I N
= 80
¢}
o

Access cycle length (s)

Fig. 15. The power consumptions of different components in
TUTWSN: (a) headnode and (b) subnode in a thousand-node
network.



M. Kuorilehto et al. | Ad Hoc Networks 6 (2008) 909-935 931

As shown, the transceiver unit is the dominating
power consumer in both headnodes and subnodes.
With shorter access cycles, the share of the trans-
ceiver unit in the power consumption is more dom-
inant. The headnodes spend considerably more time
with CPU active, due to added processing and
active waiting while receiving data. The subnodes
spend most of the time in the sleep states.

Compared to the power consumptions in the pro-
totype mapping case, the presented results are aver-
agely 28.7% larger for subnodes and 22.4% larger
for headnodes. This is mainly due to the scanning
required for the network topology creation and
maintenance, which were omitted in the prototype
mapping case. Further, headnodes have more active
reservation data slots.

6.3.2. TUTWSN lifetime

The lifetimes of TUTWSNs with different access
cycle lengths are presented in Fig. 16. The lifetimes
are shown for both a case where a node acts as a
headnode until it runs out of energy, and a case
where a headnode deliberately releases its duty
when its remaining energy level is first 50% and then
10%. The network lifetime is considered as the time
until 50%r 20% of the nodes are left. In the first
case, measurement data with reasonable accuracy
can be obtained from WSN, while in the latter case
the accuracy suffers but the network is still capable
of providing routes to sink node.

The changing of the cluster headnode balances
the load between the nodes in the network. This
lengthens the time until the first node runs out of
energy. Yet, the time between the first and the last
node running out of energy is minimal. As shown
in Fig. 16, the lifetime of the network until half of

25

—a— No change, 20%
- 0~ - Change, 20 %
20 - =~ - Change, 50 %
—e— No change, 50%

Network lifetime (h)

Access cycle length (s)

Fig. 16. TUTWSN lifetimes in different conditions.

the nodes are remaining is considerably longer when
the headnode duty is circulated. Instead, with life-
time consideration of 20% of nodes remaining, the
network longevity is better if the headnode is not
changed.

If a node operates as a subnode continuously,
lifetimes are 5.2, 9.9, 21.2, and 34.2h for 1, 2, 5,
and 10 s access cycles respectively. The reason for
the short lifetimes is the extremely limited capacity
of the capacitor being the energy storage at the
nodes. For comparison, with a 1 cm® non-recharge-
able lithium battery, the obtained lifetimes for a
subnode are 96, 182, 391, and 631 days for 1, 2, 5,
and 10 s access cycles respectively [48].

6.3.3. Delay and throughput

Fig. 17a depicts the communication delays for
different number of hops from a source to the sink
node. The delays are measured after the cluster
access cycle timings have been adapted and stabi-
lized. For one and two second access cycles, the
delays are acceptable. For an environmental moni-
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Fig. 17. TUTWSN: (a) packet delays to sink and (b)
throughputs.
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toring application, the delays are adequate even
with the longer access cycle lengths. A per hop delay
is quite independent of the distance from the sink
node but the nodes in which several data flows con-
verge cause congestion.

Throughputs for a subnode and a headnode, as
well as for the active inter-cluster links with different
number of reservation data slots are depicted in
Fig. 17b. A subnode has one active uplink for the
headnode. The headnode throughput is its incoming
throughput. The number of the reservation data
slots for an inter-cluster link is varied between two
and four, depending on the available slots. Obvi-
ously, the throughput decreases as the access cycle
length increases. This is acceptable, as the access
cycle length is typically adapted according to the
application requirements.

6.3.4. TUTWSN adaptability

The adaptability of TUTWSN is evaluated by
simulating unexpected error situations. An unrecov-
erable error is simulated at the cluster headnode.
The times elapsed until the network is reconfigured
are depicted in Fig. 18 for the different access cycle
lengths. The subnodes do not start the self-organiz-
ing cluster creation algorithm immediately, as a
cluster beacon may be lost due to a packet error.
Thus, the reconfiguration time depends on the limit
of the missed cluster beacon back-off counter. A
case, in which the cluster headnode is able to inform
about its state, is given as a reference.

As can be seen, the reconfiguration time is almost
directly proportional to the access cycle length. The
reconfiguration delay is not considerable with the
short access cycles, whereas the delay is over half
a minute for the longer access cycles.

—e— 4 AC Back-off
401 =3 ACBack-off| - - - - — - -
—a— 2 AC Back-off
—e— Informed

Reconfiguration time (s)

1 2 3 4 5 6 7 8 9 10
Access cycle length (s)

Fig. 18. The reconfiguration times of TUTWSN on an unex-
pected error situation.

6.4. ZigBee simulation results

The applicability of ZigBee to WSN applications
is evaluated by simulating the ZigBee protocols with
the defined environmental monitoring application.
In the simulations, the beacon order of ZigBee
MAC protocol is varied from 6 to 10, which results
to the access cycles of 0.98, 1.97, 3.93, 7.86, and
15.73 s. We refer these to as 1, 2, 4, 8, 16 s access
cycles for clarity. The superframe order is set to 2,
thus the length of the active period consisting of
the beacon and CAP is 61.44 ms.

6.4.1. Small scale ZigBee network

The prototype for ZigBee is modeled from the
components, the characteristics of which are mea-
sured individually. Therefore, we do not compare
the simulated results to physical deployment mea-
surements. For a fair comparison, we use the same
statically defined network configuration for ZigBee,
which is presented for TUTWSN in Section 6.2. The
application in the ZigBee simulation is identical to
that of TUTWSN simulations.

The power consumption results from the ZigBee
simulations are depicted in Fig. 19. The difference
between ZigBee device and coordinator power con-
sumptions is considerably bigger than the same dif-
ference between the corresponding TUTWSN
nodes. This is caused by the active listening of the
complete CAP, which is also the reason for the iden-
tical results of both coordinators. Compared to
TUTWSN, the power consumption of a device is
averagely two times and that of a coordinator aver-
agely 3.5 times larger than the power consumption
of the corresponding TUTWSN node.
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Fig. 19. The power consumption in a small scale ZigBee
network.
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6.4.2. Large scale network

In the large scale ZigBee simulations, a network
that consists of 100 nodes is simulated. The size of
the simulated network is restricted by the usage of
the same communication channel throughout the
network. In dense networks, the distribution of
coordinator superframes so that they do not overlap
is problematic. In the simulations, 35 coordinator
capable devices and 65 reduced function devices
are distributed randomly to a 60 x 60 m area. Due
to the congestion, the parameters of the environ-
mental monitoring application are changed so that
each coordinator stores the temperatures received
from the devices over two access cycles. The results
are then aggregated to a single data packet, which is
routed towards the ZigBee coordinator.

The power consumptions of the different compo-
nents in coordinators and devices are depicted in
Fig. 20a and b respectively. The access cycle length
is varied between 1 and 16 s and the results are aver-
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Fig. 20. The power consumptions of different components in
ZigBee: (a) coordinator and (b) device in a hundred-node
network.
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Fig. 21. ZigBee packet delays to the ZigBee coordinator.

aged over five arbitrarily selected coordinators and
devices. The scale in Fig. 20a is 18 times larger than
in Fig. 20b. Compared to results presented in
Fig. 19, the power consumption of a coordinator
is quite similar, whereas in the case devices the
power consumption depicted in Fig. 20b is consider-
able larger for longer access cycles. This is caused by
the network scanning, which is required for topol-
ogy creation and reformation in case of errors. A
node scans for a complete access cycle when search-
ing for a network.

In comparison to TUTWSN, the differences are
similar to those presented in Section 6.4.1, except
for the device vs. subnode power consumption with
longer access cycles. While in TUTWSN the scan-
ning times and the energy required for network
maintenance diminishes as the access cycle length
increases, the effect is opposite in ZigBee. Further,
the proportional share of the transceiver unit on
the power consumption is significantly larger in Zig-
Bee than in TUTWSN.

The delays in data routing towards the ZigBee
coordinator with the different access cycle lengths
are depicted in Fig. 21. As in the case of TUTWSN,
with 1 and 2 s access cycles the delays are moderate,
but with the longer access cycles the delay becomes
unacceptable. TUTWSN outperforms ZigBee in this
case. The reason for this is that in ZigBee the start
times of the access cycles are not delay optimized
as in TUTWSN.

7. Conclusions

The large design space of WSNs cannot be man-
aged without a complete tool for the WSN design,
configuration, and evaluation. This paper presents
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WISENES, which is the first tool that supports the
graphical design, simulation, final implementation,
and evaluation of WSNs within a single framework.
The WISENES framework enables a modular
design of WSN protocols and applications. Differ-
ent platforms and protocols are evaluated in order
to obtain an optimal configuration for a specific
application. The back-annotation of the measured
performance information from physical node plat-
forms improves the accuracy of the simulation
results.

The implementation of TUTWSN and ZigBee
networks shows that the design of protocols and
their performance evaluation in WISENES is fast.
The graphical state machine based notation is expli-
cit and designer friendly. The TUTWSN and ZigBee
network simulations prove the applicability and
performance of WISENES for the simulations of
large networks. Further, the simulated performance
results correspond to those of real physical
platforms.

Our main future work is projected on the devel-
opment of a more accurate sensing channel model
and mobility support. At the moment, the WISE-
NES framework is not publicly available, but we
are planning to open it as an online web-based
WSN design service. We are also considering open
source SDL tools for the design.
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